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ABSTRACT 1 

Trip distribution is an invaluable portion of the transportation planning process leading to the 2 

creation of origin-destination (OD) matrices.  Location-based social networking (LBSN) has 3 

increased in popularity and sophistication, emerging as a new travel demand data source.  Users 4 

of LBSN provide location-sensitive data interactively via mobile devices, including smartphones 5 

and tablets.  This data has the potential to provide origin-destination estimates with significantly 6 

higher temporal resolution at a much lower cost in comparison with traditional methods. This 7 

paper proposes a LBSN OD estimation model based on the doubly-constrained gravity model to 8 

improve a previously-proposed model based on the singly-constrained gravity models. The 9 

proposed methodology is calibrated and comparatively evaluated against the OD matrix 10 

generated by the singly-constrained gravity model based method as well as a reference matrix 11 

from the local metropolitan planning organization. The results of this method illustrate 12 

significant improvement in reducing the OD estimation errors caused by the sampling bias from 13 

the singly-constrained gravity model based method. 14 

KEY WORDS: Origin-Destination estimation, Location-based social networking, doubly-15 

constrained gravity model   16 
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INTRODUCTION 1 

Trip distribution is a significant step in the transportation planning process which 2 

generates the static or dynamic origin-destination (OD) trip patterns to be used by traffic 3 

assignment models. The existing data collection methods for trip distribution can be classified 4 

into three main categories: survey-based, traffic counts, and positioning technology based. 5 

Survey-based methods such as telephone, in-person interview, mail or email survey can collect 6 

complete the social-demographic information of travelers and households and trip information. 7 

These methods are time-consuming and labor-intensive and can only generate static travel 8 

demand information at low frequency (e.g. every 5-10 years) due to the funding and resource 9 

limitations. Traffic count based methods calibrate an OD matrix based on traffic detector data (1-10 

5). These methods have relatively low cost and can provide dynamic OD information, if 11 

calibrated properly. However, they require an existing OD matrix and rely on traffic assignment 12 

models to generate accurate traffic flow data to be compared with field detector data in model 13 

calibration. The use of positioning technologies for OD data collection has the potential of 14 

producing OD data with much higher spatial and temporal resolution, larger sample size, and less 15 

cost than survey-based methods (6-8). The complication lies in 1) the penetration rate of a 16 

specific position technology in the mobile devices of travelers, 2) privacy protection, and 3) the 17 

uncertainty in determining trip purposes and destinations due to positioning errors. 18 

Within the US, the affordability and accessibility attributed to recent technological 19 

advances has allowed smartphones and tablets with location based service features to be 20 

available to individuals of diverse income levels.  This in conjunction with the fast development 21 

of social networks attracts a substantial amount of users active in relaying their personal 22 

activities online often including their locations.  Location-based social networking (LBSN) 23 

combines the aspects of social networking with the location based services features, which 24 

provides some advantages over other positioning technologies (9).  User activities produce trip 25 

purposes and destination information through applications with built-in GPS by “checking-in” at 26 

particular venues.  The sample provided from this methodology has the potential to be larger 27 

than other methods due to the penetration rate of social networking services growing at a rapid 28 

pace.  Furthermore, the lack of auxiliary data collection devices and availability of real-time 29 

updated data make this method of data collection an attractive low cost option. In a previous 30 

study, a singly-constrained gravity model based method was proposed and evaluated (10). 31 

Although the study revealed promising potentials of LBSN data for OD estimation, the proposed 32 

model still has some limitations, especially the significant bias in OD patterns related to short-33 

distance trips and residential areas.    34 

This paper proposes a doubly-constrained gravity model based method whose improved 35 

learning capability, when compared to the singly-constrained method, during model calibration 36 

can reduce the sampling bias of LBSN check-in data. Section 2 of this paper introduces the state 37 

of practice for data collection.  The methodology and procedures are introduced in Section 3.  38 

Next, Section 4 provides details on the experimental design as well as results from the proposed 39 

algorithm.  Finally, Section 5 concludes the paper and provides some areas for the continuation 40 

of this research effort.  41 
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BACKGROUND 1 

State of Practice Review on OD Estimation 2 

Conventionally, OD matrices are derived by expanding sample OD matrices collected 3 

from traditional household travel behavior surveys based on social-demographic and economic 4 

data for a planning area. These survey methods include personal home interviews, telephone 5 

interviews, mail survey, and/or internet survey.  Personal home interviews are one of the most 6 

complete data sources with the highest response rate, 60-70%, when compared to other 7 

household survey methods (6).  Home interviews are the most expensive and time consuming 8 

method, while telephone, mail, and internet based surveys have significantly less cost and time 9 

involved in collection. This reduction in time and cost comes with a decrease in response rate 10 

and introduces sampling biases. In recent years, Global positioning systems (GPS) assisted travel 11 

surveys have become popular both in the US and internationally (11).  However, significant 12 

incentives as well as logistical issues, including battery outages leading to incomplete data and 13 

loss of GPS units, were identified.  Moreover, studies have shown that participants may be 14 

burdened by the extended length of GPS surveys, equipment complications, and privacy 15 

concerns (11), and samples are often biased (7).   16 

Traffic-count data has been implemented as a data collection method for use in OD 17 

matrices.  Studies have shown that OD matrix creation is possible given traffic volumes for each 18 

transportation link (1-5, 12).  However, many different matrices can be reproduced from 19 

observed traffic counts and deployment of a comprehensive detector infrastructure on all viable 20 

routes would be required.  Additionally, concerns about the accuracy of estimated traffic 21 

conditions between fixed detectors has been discussed in recent research efforts (13). A 22 

complementary survey method for the traffic count based method is the roadside intercept 23 

survey, which provides additional information regarding the OD composition of traffic flow at a 24 

road section. 25 

In recent years, the emergence of secondary planning data sources, such as GPS, 26 

cellphone, and Bluetooth, has caught researchers’ attention. Different from the aforementioned 27 

GPS based survey, recent research efforts have demonstrated the feasibility of replacing 28 

traditional survey methods with OD data directly derived from GPS trajectories generated by 29 

travelers’ in-vehicle devices (6, 8).  Cellular phones have been explored for their data collection 30 

capabilities through their employment of wireless location technologies (WLT). Studies (14, 15) 31 

have shown that cellular phone technologies were both theoretically and experimentally feasible 32 

with reasonably precise estimation results.  Penetration rates needed to achieve the 33 

spatiotemporal coverage of a network are between 2 and 3% (16). There are limitations with the 34 

technology. The spatial resolution of the cellphone positions may be within a cellular cell or 35 

location area that may include multiple TAZs (traffic analysis zones). The LBS (location based 36 

service) data based method can significantly increase the spatial resolution, but users may not 37 

turn on LBS function or report their LBS data due to privacy concerns. Recently, Bluetooth has 38 

been noted to be a low cost and user-friendly method for data collection (17-19).  Employing a 39 

unique media access control (MAC) assigned by each devices manufacturer alleviates privacy 40 

concerns affiliated with other methods of data collection.  However, the technology is limited by 41 

the short ping cycle that could lead to devices being over sampled, the potential for a single 42 

vehicle to have multiple Bluetooth capable devices, as well as the ability to turn off Bluetooth 43 

functions within a device.  Additionally, the variability of Bluetooth samples could yield 44 
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objectionable expansion errors which negates the technologies ability to independently create an 1 

estimation for an OD matrix (20). 2 

Currently, research is being conducted to determine the ability for “Big”, vehicle-to 3 

infrastructure (V2I), and smartphone data to be used for OD matrix creation. “Big” data includes 4 

transactional (i.e. credit card purchase and payment records, product/services logs), interactional, 5 

and observational data (21).  While this data sources has great potential, there are limitations to 6 

the incorporation into transportation planning, specifically with the ability for data to be shared.  7 

Additionally, data capture, management, and storage pose potential difficulty with utilization, 8 

and biases may exist.  Similar to the credit card data mentioned within “Big” data, transactional 9 

data has been researched for potential use to improve transit planning (22).  The study noted that 10 

concerns with market penetration, sampling bias, privacy concerns, as well as errors with 11 

transaction/routing assignment exist with the method.   V2I has recently been explored as a 12 

potential new data source, indicating that the use of the dedicated short-range communications 13 

connecting vehicles to infrastructure would have the potential to collect data on every vehicle 14 

within the system, effectively eliminating the need for an estimated OD matrix (23).  With the 15 

exception of V2I test-beds, this method of data collection is not viable at this time and privacy 16 

concerns would need to be address prior to acceptance.  17 

Location-Based Social Network (LBSN) and Austin LBSN Data Characteristics 18 

Location-based services (LBS) are services that use location and time data as a control 19 

feature. This feature has been encompassed within social networking to create location-based 20 

social networking (LBSN).  With the increased popularity of sites like Facebook, Twitter, and 21 

Foursquare that include LBSN, this form of data collection has been explored recently for 22 

comprehension of spatial patterns of users. The first study exploring this area was by Li and 23 

Chen (24) and utilized the Markov-based location predictor to determine future locations of users 24 

with an accuracy of 49%.  The relationships between geographic movements, the temporal 25 

dynamics of human movements, and social networking ties have been investigated in various 26 

studies (9,25,26).  Additionally, studies by Backstrom et al. (27) and Cheng et al. (28) 27 

demonstrated the ability to predict user locations via the user’s friends and content, respectively. 28 

Many social networking sites have added features that allow users to “check-in” to a 29 

place of interests which is called a “venue”. This capability allows individuals to share and save 30 

places that have been visited with fellow users and friends.  Foursquare is the most popular site 31 

that includes this feature, and as of January 2013 has over 30 million users worldwide with over 32 

three billion check-ins. Users of this particular site included businesses, which encourage check-33 

ins through promotions and discounts.  Due to the site’s popularity, high penetration rate, and 34 

large sample size, researchers have used the LBSN data available to investigate mobility patterns 35 

across spatial, temporal, and social aspects (29, 30).  36 

The research team  was among the first to used Foursquare data to specifically estimate 37 

an OD matrix in (10). This study examined non-commuting trips within the Chicago urban area 38 

demonstrating the promising potential of the methodology.  In (31), we furthered this effort by 39 

examining the use of check-in data to analyze the OD demand for Austin, TX using a singly-40 

constrained gravity model with a two regime friction factor, illustrating the potential of LBSN 41 

data for travel demand analysis and monitoring. The detailed LBSN OD estimation model based 42 

on singly-constrained gravity model is as the following.  43 

         (1) 44 
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where  3 

  : the productions for zone i  4 

  : the total check-ins in zone  ,    ∑     , where         indicates the  th venue type. 5 

  : the attractions for zone j 6 

 : the adjustment factor to zonal trip production from Foursquare check-in counts 7 

 : the adjustment factor to zonal trip attractions for Foursquare check-in counts 8 
 

 
∑ (   )   : the residual term for zone   that ensures the total production equal to the total 9 

attraction. 10 

   : the number of trips between origin zone i and destination zone j. 11 

 (   ): the friction function where     is the travel cost between zone i and j. 12 

 13 

To calibrate the model, the trip balancing process is applied to the following equations 14 

iteratively. 15 
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(   )
  (4) 16 

    
( )     
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  (   )

∑   
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 (5) 17 

METHODOLOGY  18 

The proposed model attempts to address several limitations from the previous model. First the 19 

zonal productions and attractions generated by the previous model usually results in symmetric 20 

patterns due to the uniform distribution of the residual term among all zones (See Equation 2).  21 

Second, the singly constraint model only tunes the zonal attractions. Third, the converging rate 22 

of the singly-constrained gravity model is relatively slow, which causes the model calibration to 23 

be slow and premature. To address those limitations, we propose a new model based on doubly-24 

constrained gravity model and zone-specific residual assignment as follows. 25 

         (6) 26 

           
 
 ∑   

 
 ∑ (   )    (7) 27 

                   (   ) (8) 28 

where  29 

 : the power of location factor 30 

  : the balancing factor for the productions 31 

  : the balancing factor for the attractions 32 

  
 
 ∑   

 
 : redistribute the residual based on the zonal check-in counts for zone  .  33 

 34 

In this way, the residuals are assigned based on the check-in intensity rather than evenly 35 

distribute among all zones. The initial values of    and    are calculated directly from the 36 

Foursquare check-in counts based on equations 6 and 7. The      is then calculated from    and 37 

   based on equation 8. 38 
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The doubly-constrained model can be calibrated by iteratively updating    and   . In this 1 

study, we set   
( )    and   

( )   . The values of    and    are updated using the following. 2 

   
( )  ∑    

(   )
  (9) 3 
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(   )
  (10) 4 

   
( )  

 

∑  
 
(   )

  
 
( )
  (   ) 

 (11) 5 

   
( )  

 

∑   
(   )

   
( )
  (   ) 

 (12) 6 

For consistence, the same friction function was engaged for the doubly-constrained model that 7 

provided the best coincidence ratio (CR) in the single-constrained model.  The CR measures the 8 

percent of the area that “coincides” for the two curves/distributions that are being compared (32). 9 

The friction function combined the linear model for short trips and the negative exponential 10 

model for long trips as shown in the following equation. 11 

  (   )  {
                

                   
 (13) 12 

where  ,  ,  , and   are factors that were optimized through the genetic optimization algorithm  13 

and the     is the Manhattan distance between the centroids of origin zone i and destination zone 14 

j in miles. The dual-regime formulation is used to capture CAMPO’s special treatment on OD 15 

pairs with short distance. 16 

EXPERIMENTAL DESIGN 17 

Study Area 18 
The city of Austin, TX was selected as the study area for this paper.  Austin is a diverse 19 

city that encompasses an area of 272 mi
2
 and has an estimated population of almost one million 20 

people.  The city of Austin (33, 34) was demographically compared to US Foursquare (35) users 21 

as well as the general US (36), as shown in Figure 1.  It should be noted that the Foursquare 22 

users have a higher proportion of individuals between the ages of 25 and 54, which constitutes 23 

80% of the sites users.  This age group also has a greater distribution than is seen in Austin, TX 24 

and the US. Additionally, there are significantly more female users of Foursquare (65% women 25 

compared to 35% men), which is also notably different than the distribution of gender within 26 

Austin and the US.  Examining the educational and income trends of the Foursquare user, it is 27 

noted that within the income categories of $25,000 through $74,999 as well as within the “Some 28 

College” category there is an over representation when compared to the Austin and US data.  29 

Finally, it should be noted that Foursquare prohibits users under the age of 13, which is shown in 30 

the percentages of 17 and under and “Less than High School” users. The above potential 31 

sampling bias needs to be properly addressed when converting the number of Foursquare check-32 

ins to trip counts. 33 
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  1 
FIGURE 1 Comparative Demographics. 2 

The Capital Area Metropolitan Planning Organization (CAMPO) has identified 520 3 

TAZs within the city of Austin’s jurisdiction, which will serve as the study area for this paper. 4 

CAMPO’s 2005 Travel Demand Model (TDM) serves as the reference data used for the analysis. 5 

It should be noted that CAMPO data is not considered the ground truth data due to the limitation 6 

of current data collection methods. It serves as a reference data for identifying critical empirical 7 

OD patterns.  The trip purposes identified within the CAMPO study were combined into eight 8 

categories: 9 

1. Home-based Work (HBW) 10 

2. Home-based Non-work Retail (HBR) 11 

3. Home-based Non-work Other (HBO) 12 

4. Home-based Non-work University of Texas (UT) (HBUT) 13 

5. Non-work Airport (NWAir) 14 

6. Non-home Based Work (NHBW) 15 

7. Non-home Based Other (NHBO) 16 

8. Non-home Based External (NHBE) 17 

Data Collection  18 
Foursquare data was collected by first identifying the venues within the study area.  19 

Figure 2 shows the 19,710 venues identified within the study area, demonstrating the special 20 

coverage of the data.  It should be noted that all TAZs with the exception of three, highlighted in 21 
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the figure, had at least one venue with the majority of venues located within the denser urban 1 

areas.  2 

 3 
 4 
FIGURE 2 Venue Locations within the Study Area by Individual Location and Density. 5 

Once the venues were identified, a trolling algorithm was utilized to collect check-ins for 6 

the creation of an hourly rate for each venue during the analysis period, Tuesday, June 11 7 

through Tuesday, July 2, 2012.  The data collected included the venue ID, venue name, category, 8 

latitude, longitude, number of check-ins per hour, and the number of unique users.  An initial 9 

analysis of the check-ins was performed to verify that categories were assigned to each venue.  10 

These categories, shown in Table 1, include Arts & Entertainment, College & University, Food, 11 

Professional & Other Places, Nightlife Spots, Residences, Great Outdoors, Shops & Services, 12 

and Travel & Transport.  Since categories are assigned by venue creators and are optional, some 13 

venues did not have category assignment.  For these venues, a key word search was performed to 14 

assign the appropriate primary category, when possible.  15 

 16 

  17 
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TABLE 1: Foursquare Category Venue and Check-in Statistics. 1 

Category # of Venues Percentage 
# of 

Check-ins 
Percentage 

Avg. # Check-ins 

per Venue 

Colleges & Universities 719 3.8% 367866 5.5% 512 

Shops & Services 5187 27.1% 1389636 20.9% 268 

Food 2809 14.7% 2021897 30.4% 720 

Nightlife Spots 547 2.9% 669712 10.1% 1224 

Arts & Entertainment 592 3.1% 324249 4.9% 548 

Travel & Transport 792 4.1% 479305 7.2% 605 

Professional & Other Places 4679 24.4% 832999 12.5% 178 

Great Outdoors 1596 8.3% 278065 4.2% 174 

Residences 711 3.7% 182825 2.7% 257 

Unclassified 1538 8.0% 102692 1.5% 67 

Table 1 provides a categorical breakdown of the number of venues and check-ins 2 

collected.  Of the ten venue categories, the Shops & Services category has the largest percentage 3 

of venues, while the least is associated with the Nightlife Spots category. Check-ins are most 4 

frequently associated with the Shops & Services and the Food categories, which account for 5 

51.3% of all of the check-ins. The Residences category has the least number of check-ins at 2.7% 6 

and a moderately low number of venues within the sample size.  Average number check-ins per 7 

venue was also calculated for each category, with the largest average number of check-ins 8 

coming from the Nightlife Spots category (1224 check-ins) and the least coming from the 9 

Unclassified category (67 check-ins).  It should be noted that the top three average check-ins 10 

where in the previously mentioned Nightlife Spots, as well as the Food and Travel & Transport 11 

categories.  While the Nightlife Spots and Food categories are to be expected as they are social 12 

activities, the large number of Travel & Transport check-ins is unexpected.  Additionally, due to 13 

the low percentage (1.5%) of check-ins for the Unclassified venue category, it was determined 14 

that their removal from the study would be without negatively impacting the analysis. 15 

MODEL CALIBRATION 16 

For the calibration of the proposed model, a genetic algorithm was implemented.  This 17 

algorithm within MATLAB optimizes through the mimicking of the principles of biological 18 

evolution via the repeated modification of a population of individual points using rules modeled 19 

on gene combinations in reproduction. This optimization strategy was selected for the improved 20 

chances of finding a global solution due to the algorithm’s random nature.  Within the 21 

algorithm’s calculations, “individuals” are randomly selected from the current “population” and 22 

used as “parents” of the “children” for the next generation.  This process is repeated and the 23 

population eventually “evolves” toward an optimal solution. 24 

The genetic algorithm was used to obtain parameters for the friction function,  and the 25 

production and the attraction calculations that would in turn minimize the mean absolute error 26 

(MAE) between the modeled OD matrix and the reference CAMPO OD matrix.  To evaluate the 27 

performance of these parameters, a coincidence ratio (CR) was used and calculated from the 28 

following formula: 29 

    
∑    (  

    
 ) 

∑    (  
    

 ) 
 (14) 30 
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where  1 

  
 : the percentage of trips within the trip length interval w  in the predicted trips from the check-2 

in data, where the trip length interval is used to aggregate the trip counts with an aggregation 3 

interval of one mile (1.609 km). 4 

  
 : the percentage of trips within the trip length interval w  in the survey trips from CAMPO. 5 

 6 

The value for the CR ranges from 0, when the distributions are completely different, to 1, when 7 

the distributions are exactly the same.  For this study, the higher the CR between the check-in 8 

and the CAMPO results for each model, the better the model. Table 2 provides the results from 9 

the genetic optimization. In general, the calibrated parameters are similar except for the 10 

attraction scaling factor   and the friction factor function parameters   and  . Significant 11 

improvement can be observed for the CR and MAE values from the proposed model. 12 

TABLE 2: Genetic Optimization Parameters 13 

Parameter Singly-Constrained Doubly-Constrained 

  1.02690 0.47334 

  1.74412 0.66967 

η N/A 0.21198 

  0.00100 0.16755 

  0.01252 0.04407 

  1.51817 2.05600 

  0.00283 0.00438  

  11.18205 5.22909 

CR 0.7456 0.9523 

MAE 15.9348 10.2134 

EXPERIMENTAL EVALUATION 14 

A comparison between the calibrated singly-constrained, doubly-constrained, and 15 

CAMPO OD matrices was done by examining the trip length distributions, the zonal trip 16 

production and attraction rates, and the zonal OD flow patterns. 17 

Trip Length Distributions 18 

Similar to the coincidence ratio, trip length distribution curves were examined to 19 

illustrate how closely the model output data matches the reference data.  Figure 3 shows the trip 20 

length distributions (a) and the cumulative trip length distributions (b) for the singly- and doubly-21 

constrained models compared with the reference CAMPO OD matrix.  Examination of the Trip 22 

Length Distribution portion of the figure shows the doubly-constrained model (Figure 3b) is 23 

relatively constant with respect to the general curvature.  However, for the singly-constrained 24 

model (Figure 3a), under estimation occurs for short trips and slight over estimation occurs for 25 

long trips.  For the singly-constrained cumulative distribution figure, slight under estimation is 26 

consistently shown for the curve.  While the curves do follow generally the same paths, the 27 

deviations indicated lend themselves to further fine tuning of this method.  28 
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 1 
(a) Singly-Constrained Model Trip Length Frequency Results 2 

 3 
(b) Doubly-constrained Model Trip Length Frequency Results 4 

FIGURE 3 Trip Length Distributions for Doubly Constrain 5 

Zonal Production and Attraction Rates 6 

To determine the validity of the methods used to associate the check-ins to the various 7 

venues throughout the study area, heat maps were created showing the productions and 8 

attractions for each model. Figure 4a demonstrates where the methodology excels and where 9 

there are limitations for the production calculations.  Using the CAMPO production map as a 10 

TRB 2014 Annual Meeting Paper revised from original submittal.



Jin, Cebelak, Yang, Ran, and Walton  13 

reference map, the singly-constrained model shows high production areas that are significantly 1 

less in number.  Additionally, the singly-constrained model shows mid-level production area 2 

through the study region while the CAMPO map is more polarized.  Conversely, the doubly-3 

constrained map shows production rates that are similar in magnitude to the CAMPO map 4 

through the study region where TAZs that include the central business district, airport, as well as 5 

areas dense with living, entertainment, retail, and food venues are consistently depicted as large 6 

production generators. 7 

Figure 4b provides heat maps for the attractions for each of the models, highlighting 8 

where the methodology excels and where there are limitations for the attraction calculations.  9 

Once again using the CAMPO attraction map as the reference, the singly-constrained model 10 

predicts attraction rates similar to the CAMPO model for many areas, but suffers from the 11 

inability to associate high attraction rates to all of the TAZs identified within the CAMPO map.  12 

The doubly-constrained map demonstrates the models ability to better identify areas with high 13 

attraction rates.  However, the map highlights areas where over estimation occurs, namely in the 14 

northwestern portion of the map. It should be noted that although CAMPO data are used as a 15 

reference, the data still has its limitations, for example the high variations in trip frequencies 16 

among zones potentially caused by under- or over- sampling in certain zones.  17 
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 1 

FIGURE 4 Production and Attraction Comparison Maps. 2 
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Model Matrix Comparison 1 

The next step in the analysis of the methodology was to examine the zonal flow pattern 2 

for each model, which can be regarded as the visualization of the OD matrices.  Destination 3 

zones are located along the horizontal axis, while origin zones are along the vertical axis.  The 4 

OD flow intensity,    , is calculated using the following equation: 5 

          (
   

∑ ∑      
) (15) 6 

We use the OD heat maps below to provide an illustration of the distribution of trip intensities 7 

among TAZs. Each grid (i, j) in the OD heat map indicates the     value from zone   to zone   8 

with higher values illustrated by lighter colors. A light horizontal or vertical band indicates a 9 

high production or attraction zone and light areas indicate heavily-interacting zones. A difference 10 

diagram is also depicted to show how the estimation error distributes among different OD pairs. 11 

Overall, the heat maps provide a more detailed description of OD patterns and error distributions 12 

as compared to a single performance measure. 13 

Singly-Constrained Gravity Model Based Method 14 

Figure 5a compares the OD flow patterns between the CAMPO OD and the singly-15 

constrained gravity model matrices.  Comparing the CAMPO and Foursquare matrices, the flow 16 

patterns demonstrate similarities between the two models.  While the areas of higher flow are 17 

reasonably consistent in the Foursquare model, the areas with low flow are not as prevalent.  18 

This is consistent with the less variegated productions and attractions shown within Figures 4. 19 

Additionally, the mean absolute error (MAE) matrix is provided to demonstrate how closely the 20 

estimate Foursquare matrix matches the CAMPO matrix.   21 

Doubly-Constrained Gravity Model Based Method 22 

Figure 5b compares the OD flow pattern between the CAMPO OD and the doubly-23 

constrained gravity model matrices.  Comparing these matrices, the flow patterns demonstrate 24 

similarities between the two models consistent with what was shown in the singly-constrained 25 

model.  The doubly-constrained model shows greater flow along the inter-zonal diagonal when 26 

compared to both the CAMPO reference OD and the singly-constrained model output.  27 

Additionally, the doubly-constrained model has a more variegated color pattern through the 28 

diagram, which is consistent with the reference CAMPO OD pattern and coincides with the 29 

coincidence ratio for the doubly-constrained model being closer to one than the singly-30 

constrained model. Additionally, the MAE matrix demonstrates how closely the estimate 31 

Foursquare doubly-constrained matrix matches the CAMPO matrix. The proposed method still 32 

has significant error at the diagonals of the OD matrix indicating issues with intra-zonal trip 33 

intensity estimation.  34 
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 1 
FIGURE 5 Gravity Model OD Matrix Comparison. 2 

 3 

(a) Singly-Constrained Gravity Model.  1 

(b) Doubly-Constrained Gravity Model.  1 
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CONCLUSION  1 

This paper investigates the feasibility of using the location-based social networking 2 

(LBSN) data to analyze the urban travel demand pattern using a doubly-constrained gravity 3 

model.  Check-in data from Foursquare, a leading LBSN provider, was used to create production 4 

and attraction rates for the singly- and doubly-constrained gravity models, which were used in 5 

conjunction with the CAMPO OD matrix to examine the predictability of the proposed 6 

methodology.   7 

In comparison to the traditional methods used for OD estimation, this study shows that 8 

LBSN data has potential. LBSN data is a low-cost option for updating OD matrix since the only 9 

cost comes from the purchasing of historical data from Foursquare, Twitter, and/or other LBSN 10 

data vendors. The OD matrix can be updated annually, monthly, or weekly depending on the 11 

MPO’s requirement. Compared with the prevailing secondary data methods based on GPS, 12 

Bluetooth, and Cellphone, the LBSN data has user-confirmed trip purposes and destinations 13 

eliminating the need for conducting reverse-geocoding and recurrent trip pattern recognition. 14 

Furthermore, due to its intensive spatial and temporal coverage, LBSN data has the potential to 15 

become a promising dynamic travel demand data source for Active Traffic and Demand 16 

Management (ATDM) solutions (37). 17 

 LBSN data also has its bias for different venue types (e.g. residential areas, recreational 18 

locations, and tourist attractions). In comparison to the existing singly-constrained gravity model 19 

based method, the proposed doubly-constrained model based method demonstrates better 20 

learning capabilities. There are some limitations with the proposed methodology that should be 21 

examined in future research.  The model results still indicate some geographical bias for tourist 22 

regions (i.e. the northwest region in Figure 4) and residential areas. Additionally, the estimated 23 

OD matrix still has significant errors for intra-zonal trips (the diagonal in Figure 5). Further 24 

examination into the temporal aspects of the models as well as specific trip purposes should be 25 

researched to further validate this proposed methodology.   26 
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